Cara Menentukan Zodiak Sun Moon Dan Rising
Coordination and regulation
Increasing human activity at the Moon has raised the need for coordination to safeguard international and commercial lunar activity. Issues from cooperation to mere coordination, through for example the development of a shared Lunar time, have been raised.
In particular the establishment of an international or United Nations regulatory regime for lunar human activity has been called for by the Moon Treaty and suggested through an Implementation Agreement,[265][267] but remains contentious. Current lunar programs are multilateral, with the US-led Artemis program and the China-led International Lunar Research Station. For broader international cooperation and coordination the International Lunar Exploration Working Group (ILEWG), the Moon Village Association (MVA) and more generally the International Space Exploration Coordination Group (ISECG) has been established.
Since pre-historic times people have taken note of the Moon's phases and its waxing and waning cycle, and used it to keep record of time. Tally sticks, notched bones dating as far back as 20–30,000 years ago, are believed by some to mark the phases of the Moon.[221][321][322] The counting of the days between the Moon's phases gave eventually rise to generalized time periods of lunar cycles as months, and possibly of its phases as weeks.[323]
The words for the month in a range of different languages carry this relation between the period of the month and the Moon etymologically. The English month as well as moon, and its cognates in other Indo-European languages (e.g. the Latin mensis and Ancient Greek μείς (meis) or μήν (mēn), meaning "month")[324][325][326][327] stem from the Proto-Indo-European (PIE) root of moon, *méh1nōt, derived from the PIE verbal root *meh1-, "to measure", "indicat[ing] a functional conception of the Moon, i.e. marker of the month" (cf. the English words measure and menstrual).[328][329][330] To give another example from a different language family, the Chinese language uses the same word (月) for moon as well as for month, which furthermore can be found in the symbols for the word week (星期).
This lunar timekeeping gave rise to the historically dominant, but varied, lunisolar calendars. The 7th-century Islamic calendar is an example of a purely lunar calendar, where months are traditionally determined by the visual sighting of the hilal, or earliest crescent moon, over the horizon.[331]
Of particular significance has been the occasion of full moon, highlighted and celebrated in a range of calendars and cultures, an example being the Buddhist Vesak. The full moon around the southern or northern autumnal equinox is often called the harvest moon and is celebrated with festivities such as the Harvest Moon Festival of the Chinese lunar calendar, its second most important celebration after the Chinese lunisolar Lunar New Year.[332]
Furthermore, association of time with the Moon can also be found in religion, such as the ancient Egyptian temporal and lunar deity Khonsu.
First missions to the Moon (1959–1976)
After World War II the first launch systems were developed and by the end of the 1950s they reached capabilities that allowed the Soviet Union and the United States to launch spacecraft into space. The Cold War fueled a closely followed development of launch systems by the two states, resulting in the so-called Space Race and its later phase the Moon Race, accelerating efforts and interest in exploration of the Moon.
After the first spaceflight of Sputnik 1 in 1957 during International Geophysical Year the spacecraft of the Soviet Union's Luna program were the first to accomplish a number of goals. Following three unnamed failed missions in 1958,[244] the first human-made object Luna 1 escaped Earth's gravity and passed near the Moon in 1959. Later that year the first human-made object Luna 2 reached the Moon's surface by intentionally impacting. By the end of the year Luna 3 reached as the first human-made object the normally occluded far side of the Moon, taking the first photographs of it. The first spacecraft to perform a successful lunar soft landing was Luna 9 and the first vehicle to orbit the Moon was Luna 10, both in 1966.[72]
Following President John F. Kennedy's 1961 commitment to a crewed Moon landing before the end of the decade, the United States, under NASA leadership, launched a series of uncrewed probes to develop an understanding of the lunar surface in preparation for human missions: the Jet Propulsion Laboratory's Ranger program, the Lunar Orbiter program and the Surveyor program. The crewed Apollo program was developed in parallel; after a series of uncrewed and crewed tests of the Apollo spacecraft in Earth orbit, and spurred on by a potential Soviet lunar human landing, in 1968 Apollo 8 made the first human mission to lunar orbit (the first Earthlings, two tortoises, had circled the Moon three months earlier on the Soviet Union's Zond 5, followed by turtles on Zond 6).
The first time a person landed on the Moon and any extraterrestrial body was when Neil Armstrong, the commander of the American mission Apollo 11, set foot on the Moon at 02:56 UTC on July 21, 1969.[245] Considered the culmination of the Space Race,[246] an estimated 500 million people worldwide watched the transmission by the Apollo TV camera, the largest television audience for a live broadcast at that time.[247][248] While at the same time another mission, the robotic sample return mission Luna 15 by the Soviet Union had been in orbit around the Moon, becoming together with Apollo 11 the first ever case of two extraterrestrial missions being conducted at the same time.
The Apollo missions 11 to 17 (except Apollo 13, which aborted its planned lunar landing) removed 380.05 kilograms (837.87 lb) of lunar rock and soil in 2,196 separate samples.[249] Scientific instrument packages were installed on the lunar surface during all the Apollo landings. Long-lived instrument stations, including heat flow probes, seismometers, and magnetometers, were installed at the Apollo 12, 14, 15, 16, and 17 landing sites. Direct transmission of data to Earth concluded in late 1977 because of budgetary considerations,[250][251] but as the stations' lunar laser ranging corner-cube retroreflector arrays are passive instruments, they are still being used.[252] Apollo 17 in 1972 remains the last crewed mission to the Moon. Explorer 49 in 1973 was the last dedicated U.S. probe to the Moon until the 1990s.
The Soviet Union continued sending robotic missions to the Moon until 1976, deploying in 1970 with Luna 17 the first remote controlled rover Lunokhod 1 on an extraterrestrial surface, and collecting and returning 0.3 kg of rock and soil samples with three Luna sample return missions (Luna 16 in 1970, Luna 20 in 1972, and Luna 24 in 1976).[253]
History of exploration and human presence
Perbedaan astromoni dan astrologi
Lanjutkan membaca artikel di bawah
Selama ribuan tahun, astronomi dan astrologi adalah sinonim. Para astronom tidak hanya tertarik untuk membuat katalog posisi bintang-bintang atau memetakan pergerakan planet-planet. Mereka ditugaskan untuk menciptakan horoskop yang akurat dan memprediksi nasib dan kekayaan. Faktanya, banyak astronom yang terkait dengan revolusi ilmiah sebenarnya lebih tertarik pada astrologi dibandingkan hal lainnya.
Namun, pada tahun 1800-an, astrologi mulai terpisah dari astronomi. Pada saat itu para astronom telah menemukan dua planet baru di tata surya, dan mulai menyadari bahwa:
Berbekal pemahaman baru tentang gaya gravitasi, mereka menyadari bahwa planet dan bintang tidak memiliki pengaruh apa pun terhadap kehidupan kita di bumi. Jadi astronomi lebih fokus pada ilmu atau pegetahuan tentang fisika kosmos, daripada astrologi yang lebih pada sebuah prediksi.
Illumination and phases
Half of the Moon's surface is always illuminated by the Sun (except during a lunar eclipse). Earth also reflects light onto the Moon, observable at times as Earthlight when it is reflected back to Earth from areas of the near side of the Moon that are not illuminated by the Sun.
Since the Moon's axial tilt with respect to the ecliptic is 1.5427°, in every draconic year (346.62 days) the Sun moves from being 1.5427° north of the lunar equator to being 1.5427° south of it and then back, just as on Earth the Sun moves from the Tropic of Cancer to the Tropic of Capricorn and back once every tropical year. The poles of the Moon are therefore in the dark for half a draconic year (or with only part of the Sun visible) and then lit for half a draconic year. The amount of sunlight falling on horizontal areas near the poles depends on the altitude angle of the Sun. But these "seasons" have little effect in more equatorial areas.
With the different positions of the Moon, different areas of it are illuminated by the Sun. This illumination of different lunar areas, as viewed from Earth, produces the different lunar phases during the synodic month. The phase is equal to the area of the visible lunar sphere that is illuminated by the Sun. This area or degree of illumination is given by ( 1 − cos e ) / 2 = sin 2 ( e / 2 ) {\displaystyle (1-\cos e)/2=\sin ^{2}(e/2)} , where e {\displaystyle e} is the elongation (i.e., the angle between Moon, the observer on Earth, and the Sun).
Brightness and apparent size of the Moon changes also due to its elliptic orbit around Earth. At perigee (closest), since the Moon is up to 14% closer to Earth than at apogee (most distant), it subtends a solid angle which is up to 30% larger. Consequently, given the same phase, the Moon's brightness also varies by up to 30% between apogee and perigee.[207] A full (or new) moon at such a position is called a supermoon.[201][202][208]
There has been historical controversy over whether observed features on the Moon's surface change over time. Today, many of these claims are thought to be illusory, resulting from observation under different lighting conditions, poor astronomical seeing, or inadequate drawings. However, outgassing does occasionally occur and could be responsible for a minor percentage of the reported lunar transient phenomena. Recently, it has been suggested that a roughly 3 km (1.9 mi) diameter region of the lunar surface was modified by a gas release event about a million years ago.[209][210]
The Moon has an exceptionally low albedo, giving it a reflectance that is slightly brighter than that of worn asphalt. Despite this, it is the brightest object in the sky after the Sun.[72][j] This is due partly to the brightness enhancement of the opposition surge; the Moon at quarter phase is only one-tenth as bright, rather than half as bright, as at full moon.[211] Additionally, color constancy in the visual system recalibrates the relations between the colors of an object and its surroundings, and because the surrounding sky is comparatively dark, the sunlit Moon is perceived as a bright object. The edges of the full moon seem as bright as the center, without limb darkening, because of the reflective properties of lunar soil, which retroreflects light more towards the Sun than in other directions. The Moon's color depends on the light the Moon reflects, which in turn depends on the Moon's surface and its features, having for example large darker regions. In general the lunar surface reflects a brown-tinged gray light.[212]
At times, the Moon can appear red or blue. It may appear red during a lunar eclipse, because of the red spectrum of the Sun's light being refracted onto the Moon by Earth's atmosphere. Because of this red color, lunar eclipses are also sometimes called blood moons. The Moon can also seem red when it appears at low angles and through a thick atmosphere.
The Moon may appear blue depending on the presence of certain particles in the air,[212] such as volcanic particles,[213] in which case it can be called a blue moon.
Because the words "red moon" and "blue moon" can also be used to refer to specific full moons of the year, they do not always refer to the presence of red or blue moonlight.
Eclipses only occur when the Sun, Earth, and Moon are all in a straight line (termed "syzygy"). Solar eclipses occur at new moon, when the Moon is between the Sun and Earth. In contrast, lunar eclipses occur at full moon, when Earth is between the Sun and Moon. The apparent size of the Moon is roughly the same as that of the Sun, with both being viewed at close to one-half a degree wide. The Sun is much larger than the Moon but it is the vastly greater distance that gives it the same apparent size as the much closer and much smaller Moon from the perspective of Earth. The variations in apparent size, due to the non-circular orbits, are nearly the same as well, though occurring in different cycles. This makes possible both total (with the Moon appearing larger than the Sun) and annular (with the Moon appearing smaller than the Sun) solar eclipses.[214] In a total eclipse, the Moon completely covers the disc of the Sun and the solar corona becomes visible to the naked eye.
Because the distance between the Moon and Earth is very slowly increasing over time,[185] the angular diameter of the Moon is decreasing. As it evolves toward becoming a red giant, the size of the Sun, and its apparent diameter in the sky, are slowly increasing.[k] The combination of these two changes means that hundreds of millions of years ago, the Moon would always completely cover the Sun on solar eclipses, and no annular eclipses were possible. Likewise, hundreds of millions of years in the future, the Moon will no longer cover the Sun completely, and total solar eclipses will not occur.[215]
As the Moon's orbit around Earth is inclined by about 5.145° (5° 9') to the orbit of Earth around the Sun, eclipses do not occur at every full and new moon. For an eclipse to occur, the Moon must be near the intersection of the two orbital planes.[216] The periodicity and recurrence of eclipses of the Sun by the Moon, and of the Moon by Earth, is described by the saros, which has a period of approximately 18 years.[217]
Because the Moon continuously blocks the view of a half-degree-wide circular area of the sky,[l][218] the related phenomenon of occultation occurs when a bright star or planet passes behind the Moon and is occulted: hidden from view. In this way, a solar eclipse is an occultation of the Sun. Because the Moon is comparatively close to Earth, occultations of individual stars are not visible everywhere on the planet, nor at the same time. Because of the precession of the lunar orbit, each year different stars are occulted.[219]
Cultural representation
Since prehistoric times humans have depicted and later described their perception of the Moon and its importance for them and their cosmologies. It has been characterized and associated in many different ways, from having a spirit or being a deity, and an aspect thereof or an aspect in astrology.
For the representation of the Moon, especially its lunar phases, the crescent (🌙) has been a recurring symbol in a range of cultures since at least 3,000 BCE or possibly earlier with bull horns dating to the earliest cave paintings at 40,000 BP.[220][226] In writing systems such as Chinese the crescent has developed into the symbol 月, the word for Moon, and in ancient Egyptian it was the symbol 𓇹, meaning Moon and spelled like the ancient Egyptian lunar deity Iah,[334] which the other ancient Egyptian lunar deities Khonsu and Thoth were associated with.
Iconographically the crescent was used in Mesopotamia as the primary symbol of Nanna/Sîn,[224] the ancient Sumerian lunar deity,[335][224] who was the father of Inanna/Ishtar, the goddess of the planet Venus (symbolized as the eight pointed Star of Ishtar),[335][224] and Utu/Shamash, the god of the Sun (symbolized as a disc, optionally with eight rays),[335][224] all three often depicted next to each other. Nanna/Sîn is, like some other lunar deities, for example Iah and Khonsu of ancient Egypt, Mene/Selene of ancient Greece and Luna of ancient Rome, depicted as a horned deity, featuring crescent shaped headgears or crowns.[336][337]
The particular arrangement of the crescent with a star known as the star and crescent (☪️) goes back to the Bronze Age, representing either the Sun and Moon, or the Moon and the planet Venus, in combination. It came to represent the selene goddess Artemis, and via the patronage of Hecate, which as triple deity under the epithet trimorphos/trivia included aspects of Artemis/Diana, came to be used as a symbol of Byzantium, with Virgin Mary (Queen of Heaven) later taking her place, becoming depicted in Marian veneration on a crescent and adorned with stars. Since then the heraldric use of the star and crescent proliferated, Byzantium's symbolism possibly influencing the development of the Ottoman flag, specifically the combination of the Turkish crescent with a star,[338] and becoming a popular symbol for Islam (as the hilal of the Islamic calendar) and for a range of nations.[339]
The features of the Moon, the contrasting brighter highlands and darker maria, have been seen by different cultures forming abstract shapes. Such shapes are among others the Man in the Moon (e.g. Coyolxāuhqui) or the Moon Rabbit (e.g. the Chinese Tu'er Ye or in Indigenous American mythologies the aspect of the Mayan Moon goddess, from which possibly Awilix is derived, or of Metztli/Tēcciztēcatl).[333]
Occasionally some lunar deities have been also depicted driving a chariot across the sky, such as the Hindu Chandra/Soma, the Greek Artemis, which is associated with Selene, or Luna, Selene's ancient Roman equivalent.
Color and material wise the Moon has been associated in Western alchemy with silver, while gold is associated with the Sun.[340]
Through a miracle, the so-called splitting of the Moon (Arabic: انشقاق القمر) in Islam, association with the Moon applies also to Muhammad.[341]
Lunar geologic timescale
Millions of years before present
The lunar geological periods are named after their characteristic features, from most impact craters outside the dark mare, to the mare and later craters, and finally the young, still bright and therefore readily visible craters with ray systems like Copernicus or Tycho.
Isotope dating of lunar samples suggests the Moon formed around 50 million years after the origin of the Solar System.[36][37] Historically, several formation mechanisms have been proposed,[38] but none satisfactorily explains the features of the Earth–Moon system. A fission of the Moon from Earth's crust through centrifugal force[39] would require too great an initial rotation rate of Earth.[40] Gravitational capture of a pre-formed Moon[41] depends on an unfeasibly extended atmosphere of Earth to dissipate the energy of the passing Moon.[40] A co-formation of Earth and the Moon together in the primordial accretion disk does not explain the depletion of metals in the Moon.[40] None of these hypotheses can account for the high angular momentum of the Earth–Moon system.[42]
The prevailing theory is that the Earth–Moon system formed after a giant impact of a Mars-sized body (named Theia) with the proto-Earth. The oblique impact blasted material into orbit about the Earth and the material accreted and formed the Moon[43][44] just beyond the Earth's Roche limit of ~2.56 R🜨.[45]
Giant impacts are thought to have been common in the early Solar System. Computer simulations of giant impacts have produced results that are consistent with the mass of the lunar core and the angular momentum of the Earth–Moon system. These simulations show that most of the Moon derived from the impactor, rather than the proto-Earth.[46] However, models from 2007 and later suggest a larger fraction of the Moon derived from the proto-Earth.[47][48][49][50] Other bodies of the inner Solar System such as Mars and Vesta have, according to meteorites from them, very different oxygen and tungsten isotopic compositions compared to Earth. However, Earth and the Moon have nearly identical isotopic compositions. The isotopic equalization of the Earth-Moon system might be explained by the post-impact mixing of the vaporized material that formed the two,[51] although this is debated.[52]
The impact would have released enough energy to liquefy both the ejecta and the Earth's crust, forming a magma ocean. The liquefied ejecta could have then re-accreted into the Earth–Moon system.[53][54] The newly formed Moon would have had its own magma ocean; its depth is estimated from about 500 km (300 miles) to 1,737 km (1,079 miles).[53]
While the giant-impact theory explains many lines of evidence, some questions are still unresolved, most of which involve the Moon's composition.[55] Models that have the Moon acquiring a significant amount of the proto-earth are more difficult to reconcile with geochemical data for the isotopes of zirconium, oxygen, silicon, and other elements.[56] A study published in 2022, using high-resolution simulations (up to 108 particles), found that giant impacts can immediately place a satellite with similar mass and iron content to the Moon into orbit far outside Earth's Roche limit. Even satellites that initially pass within the Roche limit can reliably and predictably survive, by being partially stripped and then torqued onto wider, stable orbits.[57]
On November 1, 2023, scientists reported that, according to computer simulations, remnants of Theia could still be present inside the Earth.[58][59]
The newly formed Moon settled into a much closer Earth orbit than it has today. Each body therefore appeared much larger in the sky of the other, eclipses were more frequent, and tidal effects were stronger.[60] Due to tidal acceleration, the Moon's orbit around Earth has become significantly larger, with a longer period.[61]
Following formation, the Moon has cooled and most of its atmosphere has been stripped.[62] The lunar surface has since been shaped by large impact events and many small ones, forming a landscape featuring craters of all ages.
The Moon was volcanically active until 1.2 billion years ago, which laid down the prominent lunar maria. Most of the mare basalts erupted during the Imbrian period, 3.3–3.7 billion years ago, though some are as young as 1.2 billion years[63] and some as old as 4.2 billion years.[64] There are differing explanations for the eruption of mare basalts, particularly their uneven occurrence which mainly appear on the near-side. Causes of the distribution of the lunar highlands on the far side are also not well understood. Topological measurements show the near side crust is thinner than the far side. One possible scenario then is that large impacts on the near side may have made it easier for lava to flow onto the surface.[65]
D. Saldo Normal Pendapatan
Untuk “Pendapatan” menjelaskan posisi atau kelompok akun pada “Laporan Laba Rugi” di sisi “Pendapatan Perdagangan” pada Kledo.
Pendapatan atau Penjualan merupakan hasil perolehan “Aset” atau sumber ekonomi yang berasal dari pihak lain (customer) sebagai imbalan atas penjualan barang atau pemberian layanan jasa perusahaan.
Tentu saja bukan hanya sekedar “Penjualan”, tetapi juga keseluruhan akun yang termasuk kelompok “Pendapatan”. Sama seperti “Liabilitas” dan “Ekuitas” pada “Laporan Neraca“, “Saldo Normal” untuk “Pendapatan” ini berada pada sisi Kredit (Cr).
Di Kledo, pada bagian “Saldo Awal”, akun dengan kelompok “Pendapatan” ditandai kepala akun nomor 5 (lima) dan untuk akun “Pendapatan Lain-lain” ditandai dengan kepala akun nomor 7 (tujuh).
Pada intinya, ketika mengisikan “Saldo Awal”, masukkan nominal positif untuk akun dengan kode 4 (empat) dan 7 (tujuh) ini pada sisi Kredit (Cr).
“Pendapatan”. Di Kledo, kelompok Penjualan ini ditandai dengan kode 4-40xxx.
Kategori “Pendapatan Lainnya” masuk pada “Pendapatan”. Di Kledo, kelompok “Pendapatan Lainnya” ini ditandai dengan kode 7-70xxx.
Bagaimana dengan “Pendapatan” dalam keadaan minus? Apabila posisi “Saldo Normal” ada di Kredit (Cr), berarti saldo atas akun “Pendapatan” tersebut bernilai positif dalam sisi Kredit (Cr). Dengan kata lain, nilai pada Credit (Cr) lebih besar dari Debit (Dr).
Atau jika dikondisikan pada “Pendapatan”, maka transaksi terkait pemasukan yang dicatat pada “Pendapatan” lebih besar dari transaksi pengeluaran. Sebaliknya, nilai “Pendapatan” negatif menandakan bahwa transaksi pengeluaran lebih besar dari transaksi masuk.
Artinya, nilai Debit (Dr) pada “Pendapatan” lebih besar dari transaksi Credit (Cr). Hal tersebut menyebabkan nilai “Pendapatan” menjadi minus.
Dalam ilmu akuntansi, keadaan itu tidak dibenarkan. Bisa jadi, ada salah pencatatan. Sama seperti pada akun “Laporan Neraca”, apabila ditemukan salah catat, kawan Kledo harus melakukan penyesuaian.
Penyesuaian pada Kledo bisa dibuat melalui fitur “Jurnal Umum” pada menu “Akun”. Tutorial terkait penambahan “Jurnal Umum” bisa kawan Kledo baca pada di sini ya!
Baca juga: Mulai Menggunakan Kledo
Position and appearance
The Moon's highest altitude at culmination varies by its lunar phase, or more correctly its orbital position, and time of the year, or more correctly the position of the Earth's axis. The full moon is highest in the sky during winter and lowest during summer (for each hemisphere respectively), with its altitude changing towards dark moon to the opposite.
At the North and South Poles the Moon is 24 hours above the horizon for two weeks every tropical month (about 27.3 days), comparable to the polar day of the tropical year. Zooplankton in the Arctic use moonlight when the Sun is below the horizon for months on end.[198]
The apparent orientation of the Moon depends on its position in the sky and the hemisphere of the Earth from which it is being viewed. In the northern hemisphere it appears upside down compared to the view from the southern hemisphere.[199] Sometimes the "horns" of a crescent moon appear to be pointing more upwards than sideways. This phenomenon is called a wet moon and occurs more frequently in the tropics.[200]
The distance between the Moon and Earth varies from around 356,400 km (221,500 mi) (perigee) to 406,700 km (252,700 mi) (apogee), making the Moon's distance and apparent size fluctuate up to 14%.[201][202] On average the Moon's angular diameter is about 0.52°, roughly the same apparent size as the Sun (see § Eclipses). In addition, a purely psychological effect, known as the Moon illusion, makes the Moon appear larger when close to the horizon.[203]
The tidally locked synchronous rotation of the Moon as it orbits the Earth results in it always keeping nearly the same face turned towards the planet. The side of the Moon that faces Earth is called the near side, and the opposite the far side. The far side is often inaccurately called the "dark side", but it is in fact illuminated as often as the near side: once every 29.5 Earth days. During dark moon to new moon, the near side is dark.[204]
The Moon originally rotated at a faster rate, but early in its history its rotation slowed and became tidally locked in this orientation as a result of frictional effects associated with tidal deformations caused by Earth.[205] With time, the energy of rotation of the Moon on its axis was dissipated as heat, until there was no rotation of the Moon relative to Earth. In 2016, planetary scientists using data collected on the 1998-99 NASA Lunar Prospector mission, found two hydrogen-rich areas (most likely former water ice) on opposite sides of the Moon. It is speculated that these patches were the poles of the Moon billions of years ago before it was tidally locked to Earth.[206]
Moon Treaty and explorational absence (1976–1990)
Following the last Soviet mission to the Moon of 1976, there was little further lunar exploration for fourteen years. Astronautics had shifted its focus towards the exploration of the inner (e.g. Venera program) and outer (e.g. Pioneer 10, 1972) Solar System planets, but also towards Earth orbit, developing and continuously operating, beside communication satellites, Earth observation satellites (e.g. Landsat program, 1972), space telescopes and particularly space stations (e.g. Salyut program, 1971).
Negotiation in 1979 of Moon treaty, and its subsequent ratification in 1984 was the only major activity regarding the Moon until 1990.